Some aspects of nonmeasurability with respct to selected $\sigma\text{-ideals}$

Robert Rałowski and Szymon Żeberski

Winter School in Abstract Analysis Section: Set Theory & Topology Hejnice, 4 February 2015

 $I \subset P(\mathbb{R}) \ \sigma$ -ideal s.t.

- 1. I contain singletons, i.e. $[\mathbb{R}]^{\omega} \subseteq I$,
- 2. *I* has Borel base, i.e. $(\forall I \in I)(\exists B \in \text{Borel} \cap I)(I \subseteq B)$,
- 3. I is translation invariant, i.e.

$$(\forall I \in I)(\forall x \in \mathbb{R})(x + I = \{x + i : i \in I\} \in I).$$

 \mathcal{N} σ -ideal of null sets and \mathcal{M} σ -ideal of all meager subsets of \mathbb{R} .

Definition

Let $A \subseteq \mathbb{R}$. We say that

- 1. A is *I*-nonmeasurable if A does not belong to the σ -algebra generated by Borel sets and σ -ideal *I*;
- 2. A is complete *I*-nonmeasurable if $A \cap B$ is *I*-nonmeasurable for every Borel set B which does not belong to *I*.

The folowing conditions are all equivalent:

- 1. A is completely I-nonmeasurable,
- 2. $A \cap B$ and $A \cap (\mathbb{R} \setminus B)$ does not belong to I for every Borel set B such that $B, \mathbb{R} \setminus B \notin I$,
- 3. A intersects every Borel set which does not belong to *I* and does not contan any of such sets.

Definition

Let $A \subseteq \mathbb{R}$. We say that

- 1. A is *I*-nonmeasurable if A does not belong to the σ -algebra generated by Borel sets and σ -ideal *I*;
- 2. A is complete *I*-nonmeasurable if $A \cap B$ is *I*-nonmeasurable for every Borel set B which does not belong to *I*.

The folowing conditions are all equivalent:

- 1. A is completely I-nonmeasurable,
- 2. $A \cap B$ and $A \cap (\mathbb{R} \setminus B)$ does not belong to I for every Borel set B such that $B, \mathbb{R} \setminus B \notin I$,
- 3. A intersects every Borel set which does not belong to *I* and does not contan any of such sets.

Steinhaus property

Definition

We say that I has Steinhaus property if

 $(\forall A \in \text{Borel } \setminus I)(\forall B \notin I)(A - B \text{ contains an open interval })$

where $A - B = \{a - b : a \in A, b \in B\}$. *M* and *N* has Steinhaus property but $\mathbb{R}^{\leq \omega}$ not. Theorem Assume I has Steinhaus property. Then there exists a partition $\mathcal{P} \subseteq I$ of \mathbb{R} such that for every $\mathcal{A} \subseteq \mathcal{P}$

∪ A is I-nonmeasurable
 ↓
 ∪ A is completely I-nonmeasurable.

Finite sets

Theorem

Let $\mathcal{P} \subseteq [\mathbb{R}]^{<\omega}$ be a partition of \mathbb{R} . Then

- 1. there is $A_0 \subseteq \mathcal{P}$ such that $\bigcup A_0$ is completely *I*-nonmeasurable;
- 2. there is $A_1 \subseteq P$ such that $\bigcup A_1$ is I-nonmeasurable but is not completely I-nonmeasurable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Countable sets

Theorem

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ is a point-countable cover of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Theorem $(\neg CH)$

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ is a partition of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable but is not completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Countable sets

Theorem

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ is a point-countable cover of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Theorem $(\neg CH)$

Assume that $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ is a partition of \mathbb{R} . Then we can find $\mathcal{A} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable but is not completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Theorem (CH) There is $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ a partition of \mathbb{R} such that for any $\mathcal{A} \subseteq \mathcal{P}$ $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable \downarrow $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Proof.

Enumerate $\{B_{\xi} : \xi < \omega_1\}$ of all perfect subsets of \mathbb{R} . Choose partition $\mathcal{P} = \{X_{\xi} : \xi < \omega_1\} \subseteq \mathbb{R}^{\leq \omega}$ of \mathbb{R} such that for every $\beta < \alpha$

$$B_{\beta} \cap X_{\alpha} \neq \emptyset$$

Theorem (CH) There is $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ a partition of \mathbb{R} such that for any $\mathcal{A} \subseteq \mathcal{P}$ $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable \Downarrow $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Proof.

Enumerate $\{B_{\xi} : \xi < \omega_1\}$ of all perfect subsets of \mathbb{R} . Choose partition $\mathcal{P} = \{X_{\xi} : \xi < \omega_1\} \subseteq \mathbb{R}^{\leq \omega}$ of \mathbb{R} such that for every $\beta < \alpha$

 $B_{\beta} \cap X_{\alpha} \neq \emptyset$

Theorem (CH) There is $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ a partition of \mathbb{R} such that for any $\mathcal{A} \subseteq \mathcal{P}$ $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable \downarrow $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Proof.

Enumerate $\{B_{\xi} : \xi < \omega_1\}$ of all perfect subsets of \mathbb{R} . Choose partition $\mathcal{P} = \{X_{\xi} : \xi < \omega_1\} \subseteq \mathbb{R}^{\leq \omega}$ of \mathbb{R} such that for every $\beta < \alpha$

$$B_{\beta} \cap X_{\alpha} \neq \emptyset$$

Theorem (*CH*) There is $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ a partition of \mathbb{R} such that for any $\mathcal{A} \subseteq \mathcal{P}$ $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable \Downarrow $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Proof.

Enumerate $\{B_{\xi} : \xi < \omega_1\}$ of all perfect subsets of \mathbb{R} . Choose partition $\mathcal{P} = \{X_{\xi} : \xi < \omega_1\} \subseteq \mathbb{R}^{\leq \omega}$ of \mathbb{R} such that for every $\beta < \alpha$

$$B_{\beta} \cap X_{\alpha} \neq \emptyset$$

Theorem (*CH*) There is $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ a partition of \mathbb{R} such that for any $\mathcal{A} \subseteq \mathcal{P}$ $\bigcup \mathcal{A}$ is $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable \Downarrow $\bigcup \mathcal{A}$ is completely $[\mathbb{R}]^{\leq \omega}$ -nonmeasurable.

Proof.

Enumerate $\{B_{\xi} : \xi < \omega_1\}$ of all perfect subsets of \mathbb{R} . Choose partition $\mathcal{P} = \{X_{\xi} : \xi < \omega_1\} \subseteq \mathbb{R}^{\leq \omega}$ of \mathbb{R} such that for every $\beta < \alpha$

$$B_{\beta} \cap X_{\alpha} \neq \emptyset$$

Set
$$\mathcal{A} \subseteq \mathcal{P}$$
 such that $|\mathcal{A}| = |\mathcal{P} \setminus \mathcal{A}| = \omega_1$
Then $B_{\xi} \cap \bigcup \mathcal{A} \neq \emptyset$ and $B_{\xi} \cap \bigcup (\mathcal{P} \setminus \mathcal{A}) \neq \emptyset$

Characterisation of Continuum Hypothesis

The following statements are equivalent:

- 1. CH,
- 2. there is $\mathcal{P} \subseteq [\mathbb{R}]^{\leq \omega}$ a partition of \mathbb{R} such that for any $\mathcal{A} \subseteq \mathcal{P}$

Definition (Marczewski ideal s_0)

Let X be any fixed uncountable Polish space. Then we say that $A \in \mathcal{P}(X)$ is in s_0 iff

 $(\forall P \in Perf(X))(\exists Q \in Perf(X)) \ Q \subseteq P \land Q \cap A = \emptyset.$

s - measurability

Definition (s-measurable set)

Let X be any fixed uncountable Polish space. Then we say that $A \in \mathcal{P}(X)$ is *s*-measurable iff

$$(\forall P \in \operatorname{Perf}(X))(\exists Q \in \operatorname{Perf}(X)) \ Q \subseteq P \land (Q \subseteq A \lor Q \cap A = \emptyset).$$

For every tree $T \subseteq \omega^{<\omega}$ let [T] be an envelope of T which is defined as follows:

$$[T] = \{ x \in \omega^{\omega} : (\forall n \in \omega) x \upharpoonright n \in T \}.$$

I - measurability

A tree $T \subseteq \omega^{<\omega}$ is called a **Laver tree**, iff,

$$\blacktriangleright \ (\exists s \in T) (\forall t \in T) s \subseteq t \lor t \subseteq s$$

►
$$(\forall t \in T) s \subseteq t \rightarrow \{n \in \omega : t^n \in T\} \in [\omega]^{\omega}$$

Definition (ideal I_0)

We say that $A\in \mathcal{P}(\omega^\omega)$ is in I_0 iff

$$(\forall T \in \mathsf{LT})(\exists Q \in \mathsf{LT}) \ Q \subseteq T \land [Q] \cap A = \emptyset.$$

Definition (*I*-measurable set)

We say that $A \in \mathcal{P}(\omega^{\omega})$ is *I*-measurable iff for every Laver tree $T \in LT$ there is a Laver tree $S \in LT$ such that

$$(S \subseteq T \land [S] \subseteq A) \lor (S \subseteq T \land [S] \cap A = \emptyset).$$

Miller tree

A tree $T \subseteq \omega^{<\omega}$ is called a **Miller tree**, iff,

$$\blacktriangleright \ (\exists s \in T) (\forall t \in T) s \subseteq t \lor t \subseteq s$$

$$(\forall t \in T) s \subseteq t \to (\exists t' \in T) (t \subseteq t') \land \{n \in \omega : t^{\frown} n \in T\} \in [\omega]^{\omega}$$

 m_0 and *m*-measurability is defined as in Laver tree case.

Theorem

There exists a **m.a.d.** family of functions $\mathcal{A} \subseteq \omega^{\omega}$ such that \mathcal{A} is not s, l, m-measurable at the same time, and there is an dominating subfamily $\mathcal{A}' \in [\mathcal{A}]^{\leq 0}$ in Baire space ω^{ω} .

Proof

Let us inscribe dominating family $\mathscr{D} \in [\omega^{\omega}]^{\mathfrak{d}}$ into envelope of a.d. Laver tree $\mathcal{T} \subseteq 4\mathbb{N}^{<\omega}$ and choose

- ▶ a.d. perfect tree $S \subseteq (4\mathbb{N}+1)^{<\omega}$
- ▶ a.d. Miller tree $M \subseteq (4\mathbb{N}+2)^{<\omega}$
- ▶ a.d Laver tree $L \subseteq (4\mathbb{N} + 3)^{<\omega}$

Let us enumerate $Perf(S) = \{T_{\alpha} : \alpha < \mathfrak{c}\}$ a family of all perfect subsets of S and analogously $Miller(M) = \{M_{\alpha} : \alpha < \mathfrak{c}\},$ $Laver(L) = \{L_{\alpha} : \alpha < \mathfrak{c}\}.$

By transfinite recursion let us define

. . .

$$\{w_{\alpha} \in [S]^{2} \times \omega^{\omega} \times [M]^{2} \times \omega^{\omega} \times [L]^{2} \times \omega^{\omega} : \alpha < \mathfrak{c}\}$$

where $w_{\alpha} = (a_{\alpha}^{s}, d_{\alpha}^{s}, x_{\alpha}^{s}, a_{\alpha}^{m}, d_{\alpha}^{m}, x_{\alpha}^{m}, a_{\alpha}^{l}, d_{\alpha}^{l}, x_{\alpha}^{l})$ for any $\alpha < \mathfrak{c}$, and such that for any $\alpha < \mathfrak{c}$ we have:

1.
$$a_{\alpha}^{s}, d_{\alpha}^{s} \in S_{\alpha},$$

2. $\{a_{\xi}^{s} : \xi < \alpha\} \cap \{d_{\xi}^{s} : \xi < \alpha\} = \emptyset,$
3. $\{a_{\xi}^{s} : \xi < \alpha\} \cup \{x_{\xi}^{s} : \xi < \alpha\}$ is a.d.,
4. $\forall^{\infty} n \, x_{\alpha}^{s}(n) = d_{\alpha}^{s}(n)$ but $x_{\alpha}^{s} \neq d_{\alpha}^{s}.$
5. $a_{\alpha}^{m}, d_{\alpha}^{m} \in M_{\alpha},$
6. $\{a_{\xi}^{m} : \xi < \alpha\} \cap \{d_{\xi}^{m} : \xi < \alpha\} = \emptyset,$
7. $\{a_{\xi}^{m} : \xi < \alpha\} \cup \{x_{\xi}^{m} : \xi < \alpha\}$ is a.d.,
8. $\forall^{\infty} n \, x_{\alpha}^{m}(n) = d_{\alpha}^{m}(n)$ but $x_{\alpha}^{m} \neq d_{\alpha}^{m}.$
9. $a_{\alpha}^{l}, d_{\alpha}^{l} \in L_{\alpha},$
10. $\{a_{\xi}^{l} : \xi < \alpha\} \cap \{d_{\xi}^{l} : \xi < \alpha\} = \emptyset,$
11. $\{a_{\xi}^{l} : \xi < \alpha\} \cup \{x_{\xi}^{l} : \xi < \alpha\}$ is a.d.,
12. $\forall^{\infty} n \, x_{\alpha}^{l}(n) = d_{\alpha}^{l}(n)$ but $x_{\alpha}^{l} \neq d_{\alpha}^{l}.$

By transfinite recursion let us define

. . .

$$\{w_{\alpha} \in [S]^{2} \times \omega^{\omega} \times [M]^{2} \times \omega^{\omega} \times [L]^{2} \times \omega^{\omega} : \alpha < \mathfrak{c}\}$$

where $w_{\alpha} = (a_{\alpha}^{s}, d_{\alpha}^{s}, x_{\alpha}^{s}, a_{\alpha}^{m}, d_{\alpha}^{m}, x_{\alpha}^{m}, a_{\alpha}^{l}, d_{\alpha}^{l}, x_{\alpha}^{l})$ for any $\alpha < \mathfrak{c}$, and such that for any $\alpha < \mathfrak{c}$ we have:

1.
$$a_{\alpha}^{s}, d_{\alpha}^{s} \in S_{\alpha},$$

2. $\{a_{\xi}^{s}: \xi < \alpha\} \cap \{d_{\xi}^{s}: \xi < \alpha\} = \emptyset,$
3. $\{a_{\xi}^{s}: \xi < \alpha\} \cup \{x_{\xi}^{s}: \xi < \alpha\}$ is a.d.,
4. $\forall^{\infty}n \ x_{\alpha}^{s}(n) = d_{\alpha}^{s}(n)$ but $x_{\alpha}^{s} \neq d_{\alpha}^{s}.$
5. $a_{\alpha}^{m}, d_{\alpha}^{m} \in M_{\alpha},$
6. $\{a_{\xi}^{m}: \xi < \alpha\} \cap \{d_{\xi}^{m}: \xi < \alpha\} = \emptyset,$
7. $\{a_{\xi}^{m}: \xi < \alpha\} \cup \{x_{\xi}^{m}: \xi < \alpha\}$ is a.d.,
8. $\forall^{\infty}n \ x_{\alpha}^{m}(n) = d_{\alpha}^{m}(n)$ but $x_{\alpha}^{m} \neq d_{\alpha}^{m}.$
9. $a_{\alpha}^{l}, d_{\alpha}^{l} \in L_{\alpha},$
10. $\{a_{\xi}^{l}: \xi < \alpha\} \cap \{d_{\xi}^{l}: \xi < \alpha\} = \emptyset,$
11. $\{a_{\xi}^{l}: \xi < \alpha\} \cup \{x_{\xi}^{l}: \xi < \alpha\}$ is a.d.,
12. $\forall^{\infty}n \ x_{\alpha}^{l}(n) = d_{\alpha}^{l}(n)$ but $x_{\alpha}^{l} \neq d_{\alpha}^{l}.$

By transfinite induction theorem we have required sequence of the length \mathfrak{c} . Now set

$$A_{\mathfrak{s}} = \mathscr{D} \cup \{a_{\alpha}^{\mathfrak{s}} : \alpha < \mathfrak{c}\} \cup \{x_{\alpha}^{\mathfrak{s}} : \alpha < \mathfrak{c}\},$$
$$A_{\mathfrak{m}} = \mathscr{D} \cup \{a_{\alpha}^{\mathfrak{m}} : \alpha < \mathfrak{c}\} \cup \{x_{\alpha}^{\mathfrak{m}} : \alpha < \mathfrak{c}\}$$

and

. . .

$$A_{I} = \mathscr{D} \cup \{a_{\alpha}^{I} : \alpha < \mathfrak{c}\} \cup \{x_{\alpha}^{I} : \alpha < \mathfrak{c}\}$$

and let us extend the family $\mathcal{A} = \mathscr{D} \cup \mathcal{A}_s \cup \mathcal{A}_m \cup \mathcal{A}_l$ to any maximal a.d. family \mathcal{A} . It is easy to check that \mathcal{A} is required s, m and l-nonmeasurable m.a.d. family in the Baire space ω^{ω} with a dominating subfamily of size \mathscr{D} , what completes this proof.

Theorem

There are subsets A, B, C of the ω^{ω} such that

- ► A is I-measurable and not s-measurable,
- B is m-measurable but not s-measurable,
- C is I-measurable but not m-measurable.

Moreover, if $\mathfrak{b} = \mathfrak{c}$ then

- there is a not I-measurable set which is s-measurable
- there is a not m-measurable set which is s-measurable
- there is a not I-measurable set which is m-measurable.

Theorem

There are subsets A, B, C of the ω^{ω} such that

- A is I-measurable and not s-measurable,
- B is m-measurable but not s-measurable,
- C is I-measurable but not m-measurable.

Moreover, if $\mathfrak{b} = \mathfrak{c}$ then

- there is a not I-measurable set which is s-measurable
- there is a not m-measurable set which is s-measurable
- there is a not I-measurable set which is m-measurable.

Thank You for your attention

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>